Cubic zirconia


Cubic zirconia is the cubic crystalline form of zirconium dioxide. The synthesized material is hard and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirconium silicate. It is sometimes erroneously called cubic zirconium.
Because of its low cost, durability, and close visual likeness to diamond, synthetic cubic zirconia has remained the most gemologically and economically important competitor for diamonds since commercial production began in 1976. Its main competitor as a synthetic gemstone is a more recently cultivated material, synthetic moissanite.

Technical aspects

Cubic zirconia is crystallographically isometric, an important attribute of a would-be diamond simulant. During synthesis zirconium oxide naturally forms monoclinic crystals, which are stable under normal atmospheric conditions. A stabilizer is required for cubic crystals to form, and remain stable at ordinary temperatures; typically this is either yttrium or calcium oxide, the amount of stabilizer used depending on the many recipes of individual manufacturers. Therefore, the physical and optical properties of synthesized CZ vary, all values being ranges.
It is a dense substance, with a density between 5.6 and 6.0 g/cm3—about 1.65 times that of diamond. Cubic zirconia is relatively hard, 8–8.5 on the Mohs scale—slightly harder than most semi-precious natural gems. Its refractive index is high at 2.15–2.18 and its luster is Adamantine lustre. Its dispersion is very high at 0.058–0.066, exceeding that of diamond. Cubic zirconia has no cleavage and exhibits a conchoidal fracture. Because of its high hardness, it is generally considered brittle.
Under shortwave UV cubic zirconia typically fluoresces a yellow, greenish yellow or "beige". Under longwave UV the effect is greatly diminished, with a whitish glow sometimes being seen. Colored stones may show a strong, complex rare earth absorption spectrum.

History

Discovered in 1892, the yellowish monoclinic mineral baddeleyite is a natural form of zirconium oxide.
The high melting point of zirconia hinders controlled growth of single crystals. However, stabilization of cubic zirconium oxide had been realized early on, with the synthetic product stabilized zirconia introduced in 1929. Although cubic, it was in the form of a polycrystalline ceramic: it was used as a refractory material, highly resistant to chemical and thermal attack.
In 1937, German mineralogists M. V. Stackelberg and K. Chudoba discovered naturally occurring cubic zirconia in the form of microscopic grains included in metamict zircon. This was thought to be a byproduct of the metamictization process, but the two scientists did not think the mineral important enough to give it a formal name. The discovery was confirmed through X-ray diffraction, proving the existence of a natural counterpart to the synthetic product.
As with the majority of grown diamond substitutes, the idea of producing single-crystal cubic zirconia arose in the minds of scientists seeking a new and versatile material for use in lasers and other optical applications. Its production eventually exceeded that of earlier synthetics, such as synthetic strontium titanate, synthetic rutile, YAG and GGG.
Some of the earliest research into controlled single-crystal growth of cubic zirconia occurred in 1960s France, much work being done by Y. Roulin and R. Collongues. This technique involved molten zirconia being contained within a thin shell of still-solid zirconia, with crystal growth from the melt. The process was named cold crucible, an allusion to the system of water cooling used. Though promising, these attempts yielded only small crystals.
Later, Soviet scientists under V. V. Osiko in the Laser Equipment Laboratory at the Lebedev Physical Institute in Moscow perfected the technique, which was then named skull crucible. They named the jewel Fianit after the institute's name FIAN, but the name was not used outside of the USSR. This was known at the time as the Institute of Physics at the Russian Academy of Science. Their breakthrough was published in 1973, and commercial production began in 1976. In 1977, cubic zirconia began to be mass-produced in the jewelry marketplace by the Ceres Corporation, with crystals stabilized with 94% yttria. Other major producers as of 1993 include Taiwan Crystal Company Ltd, Swarovski and ICT inc. By 1980, annual global production had reached 60 million carats and continued to increase, with production reaching around 400 tonnes per year in 1998.
Because the natural form of cubic zirconia is so rare, all cubic zirconia used in jewelry has been synthesized, one method of which was patented by Josep F. Wenckus & Co. in 1997.

Synthesis

The skull-melting method refined by Josep F. Wenckus and coworkers in 1997 remains the industry standard. This is largely due to the process allowing for temperatures of over 3000 °C to be achieved, lack of contact between crucible and material as well as the freedom to choose any gas atmosphere. Primary downsides to this method include the inability to predict the size of the crystals produced and it is impossible to control the crystallization process through temperature changes.
The apparatus used in this process consists of a cup-shaped crucible surrounded by radio frequency-activated copper coils and a water-cooling system.
Zirconium dioxide thoroughly mixed with a stabilizer is fed into a cold crucible. Metallic chips of either zirconium or the stabilizer are introduced into the powder mix in a compact pile manner. The RF generator is switched on and the metallic chips quickly start heating up and readily oxidize into more zirconia. Consequently, the surrounding powder heats up by thermal conduction, begins melting and, in turn, becomes electroconductive, and thus it begins to heat up via the RF generator as well. This continues until the entire product is molten. Due to the cooling system surrounding the crucible, a thin shell of sintered solid material is formed. This causes the molten zirconia to remain contained within its own powder which prevents it from being contaminated from the crucible and reduces heat loss. The melt is left at high temperatures for some hours to ensure homogeneity and ensure that all impurities have evaporated. Finally, the entire crucible is slowly removed from the RF coils to reduce the heating and let it slowly cool down. The rate at which the crucible is removed from the RF coils is chosen as a function of the stability of crystallization dictated by the phase transition diagram. This provokes the crystallization process to begin and useful crystals begin to form. Once the crucible has been completely cooled to room temperature, the resulting crystals are multiple elongated-crystalline blocks.
This shape is dictated by a concept known as crystal degeneration according to Tiller. The size and diameter of the obtained crystals is a function of the cross-sectional area of the crucible, volume of the melt and composition of the melt. The diameter of the crystals is heavily influenced by the concentration of Y2O3 stabilizer.

Phase relations in zirconia solids solutions

As seen on the phase diagram, the cubic phase will crystallize first as the solution is cooled down no matter the concentration of Y2O3. If the concentration of Y2O3 is not high enough the cubic structure will start to break down into the tetragonal state which will then break down into a monoclinic phase. If the concentration of Y2O3 is between 2.5–5% the resulting product will be PSZ while monophasic cubic crystals will form from around 8–40%. Below 14% at low growth rates tend to be opaque indicating partial phase separation in the solid solution. Above this threshold crystals tend to remain clear at reasonable growth rates and maintains good annealing conditions.

Doping

Because of cubic zirconia's isomorphic capacity, it can be doped with several elements to change the color of the crystal. A list of specific dopants and colors produced by their addition can be seen below.
DopantSymbolColor
CeriumCeyellow-orange-red
ChromiumCrgreen
CobaltColilac-violet-blue
CopperCuyellow-aqua
ErbiumErpink
EuropiumEupink
IronFeyellow
HolmiumHoChampagne
ManganeseMnbrown-violet
NeodymiumNdpurple
NickelNiyellow-brown
PraseodymiumPramber
ThuliumTmyellow-brown
TitaniumTigolden brown
VanadiumVgreen

Primary growth defects

The vast majority of YCZ crystals are clear with high optical perfection and with gradients of the refractive index lower than. However some samples contain defects with the most characteristic and common ones listed below.
  • Growth striations: These are located perpendicular to the growth direction of the crystal and are caused mainly by either fluctuations in the crystal growth rate or the non-congruent nature of liquid-solid transition, thus leading to non-uniform distribution of Y2O3.
  • Light-scattering phase inclusions: Caused by contaminants in the crystal, typically of magnitude 0.03–10 μm.
  • Mechanical stresses: Typically caused by the high temperature gradients of the growth and cooling processes, causing the crystal to form with internal mechanical stresses acting on it. This causes refractive index values of up to, although the effect of this can be reduced by annealing at 2100 °C followed by a slow enough cooling process.
  • Dislocations: Similar to mechanical stresses, dislocations can be greatly reduced by annealing.