Bird migration
Bird migration is a seasonal movement of some birds between breeding and wintering grounds that occurs twice a year. It is typically from north to south or from south to north. Migration is inherently risky, due to predation and mortality.
The Arctic tern holds the long-distance migration record for birds, travelling between Arctic breeding grounds and the Antarctic each year. Some species of tubenoses, such as albatrosses, circle the Earth, flying over the southern oceans, while others such as Manx shearwaters migrate between their northern breeding grounds and the southern ocean. Shorter migrations are common, while longer ones are not. The shorter migrations include altitudinal migrations on mountains, including the Andes and Himalayas.
The timing of migration seems to be controlled primarily by changes in day length. Migrating birds navigate using celestial cues from the Sun and stars, the Earth's magnetic field, and mental maps.
Historical views
In the Pacific, traditional land-finding techniques used by Micronesians and Polynesians suggest that bird migration was observed and interpreted for more than 3,000 years. In Samoan tradition, for example, Tagaloa sent his daughter Sina to Earth in the form of a bird, Tuli, to find dry land, the word tuli referring specifically to land-finding waders, often to the Pacific golden plover.Writings of ancient Greeks recognized the seasonal comings and goings of birds. Aristotle recorded that cranes traveled from the steppes of Scythia to marshes at the headwaters of the Nile, an observation repeated by Pliny the Elder in his Historia Naturalis. Aristotle, however, suggested that swallows and other birds hibernated. This belief persisted as late as 1878 when Elliott Coues listed the titles of no fewer than 182 papers dealing with the hibernation of swallows. Even the "highly observant" Gilbert White, in his posthumously published 1789 The Natural History of Selborne, quoted a man's story about swallows being found in a chalk cliff collapse "while he was a schoolboy at Brighthelmstone", though the man denied being an eyewitness. However, he writes that "as to swallows being found in a torpid state during the winter in the Isle of Wight or any part of this country, I never heard any such account worth attending to", and that if early swallows "happen to find frost and snow they immediately withdraw for a time—a circumstance this much more in favour of hiding than migration", since he doubts they would "return for a week or two to warmer latitudes".
Only at the end of the eighteenth century was migration accepted as an explanation for the winter disappearance of birds from northern climes. Thomas Bewick's A History of British Birds mentions a report from "a very intelligent master of a vessel" who, "between the islands of Menorca and Majorca, saw great numbers of Swallows flying northward", and states the situation in Britain as follows:
Bewick then describes an experiment that succeeded in keeping swallows alive in Britain for several years, where they remained warm and dry through the winters. He concludes:
In 1822, a white stork was found in the German state of Mecklenburg with an arrow made from central African hardwood, which provided some of the earliest evidence of long-distance stork migration. This bird was referred to as a Pfeilstorch, German for "Arrow stork".
General patterns
Migration is the regular seasonal movement, often north and south, undertaken by many species of birds. Migration is marked by its annual seasonality and movement between breeding and non-breeding areas. Nonmigratory bird movements include those made in response to environmental changes including in food availability, habitat, or weather. Sometimes, journeys are not termed "true migration" because they are irregular or in only one direction. Non-migratory birds are said to be resident or sedentary. Approximately 1,800 of the world's 10,000 bird species are long-distance migrants.Many bird populations migrate long distances along a flyway. The most common pattern involves flying north in the spring to breed in the temperate or Arctic summer and returning in the autumn to wintering grounds in warmer regions to the south. In the southern hemisphere, the directions are reversed, but there is less land area in the far south to support long-distance migration.
The primary motivation for migration appears to be food; for example, some hummingbirds choose not to migrate if fed through the winter. In addition, the longer days of the northern summer provide extended time for breeding birds to feed their young. This helps diurnal birds to produce larger clutches than related non-migratory species that remain in the tropics. As the days shorten in autumn, the birds return to warmer regions where the available food supply varies little with the season.
These advantages offset the high stress, physical exertion costs, and other risks of migration. Predation can be heightened during migration: Eleonora's falcon Falco eleonorae, which breeds on Mediterranean islands, has a very late breeding season, coordinated with the autumn passage of southbound passerine migrants, which it feeds to its young. A similar strategy is adopted by the greater noctule bat, which preys on nocturnal passerine migrants. The higher concentrations of migrating birds at stopover sites make them prone to parasites and pathogens, which require a heightened immune response.
Within a species not all populations may be migratory; this is known as "partial migration". Partial migration is very common in the southern continents; in Australia, 44% of non-passerine birds and 32% of passerine species are partially migratory. In some species, the population at higher latitudes tends to be migratory and will often winter at lower latitude. The migrating birds bypass the latitudes where other populations may be sedentary, where suitable wintering habitats may already be occupied. This is an example of leap-frog migration. Many fully migratory species show leap-frog migration, and many show the alternative, chain migration, where populations 'slide' more evenly north and south without reversing the order.
Within a population, it is common for different ages and/or sexes to have different patterns of timing and distance. Female chaffinches Fringilla coelebs in Eastern Fennoscandia migrate earlier in the autumn than males do and the European tits of genera Parus and Cyanistes only migrate in their first year.
Most migrations begin with the birds starting off in a broad front. Often, this front narrows into one or more preferred routes termed flyways. These routes typically follow mountain ranges or coastlines, sometimes rivers, and may take advantage of updrafts and other wind patterns or avoid geographical barriers such as large stretches of open water. The specific routes may be genetically programmed or learned to varying degrees. The routes taken on forward and return migration are often different.
Many, if not most, birds migrate in flocks. For larger birds, flying in flocks reduces the energy cost. Geese in a V formation may conserve 12–20% of the energy they would need to fly alone. Red knots Calidris canutus and dunlins Calidris alpina were found in radar studies to fly faster in flocks than when they were flying alone.
Birds fly at varying altitudes during migration. An expedition to Mt. Everest found skeletons of northern pintail Anas acuta and black-tailed godwit Limosa limosa at on the Khumbu Glacier. Bar-headed geese Anser indicus have been recorded by GPS flying at up to while crossing the Himalayas, at the same time engaging in the highest rates of climb to altitude for any bird. Anecdotal reports of them flying much higher have yet to be corroborated with any direct evidence. Seabirds fly low over water but gain altitude when crossing land, and the reverse pattern is seen in land birds. However most bird migration is in the range of. Bird strike Aviation records from the United States show most collisions occur below and almost none above.
Bird migration is not limited to birds that can fly. Most species of penguin migrate by swimming. These routes can cover over. Dusky grouse Dendragapus obscurus perform altitudinal migration mostly by walking. Emus Dromaius novaehollandiae in Australia have been observed to undertake long-distance movements on foot during droughts.
Nocturnal migratory behaviour
During nocturnal migration, many birds give nocturnal flight calls, which are short, contact-type calls. These likely serve to maintain the composition of a migrating flock, and can sometimes encode the sex of a migrating individual, and to avoid collision in the air. Nocturnal migration can be monitored using weather radar data, allowing ornithologists to estimate the number of birds migrating on a given night, and the direction of the migration. Future research includes the automatic detection and identification of nocturnally calling migrant birds.Nocturnal migrants land in the morning and may feed for a few days before resuming their migration. These birds are referred to as passage migrants in the regions where they occur for a short period between the origin and destination.
Nocturnal migrants minimize depredation, avoid overheating and can feed during the day. One cost of nocturnal migration is the loss of sleep. Migrants may be able to alter their quality of sleep to compensate for the loss.
Long-distance migration
The typical image of migration is of northern land birds, such as swallows and birds of prey, making long flights to the tropics. However, many Holarctic wildfowl and finch species winters in the North Temperate Zone, in regions with milder winters than their summer breeding grounds. For example, the pink-footed goose migrates from Iceland to Britain and neighbouring countries, whilst the dark-eyed junco migrates from subarctic and arctic climates to the contiguous United States and the American goldfinch from taiga to wintering grounds extending from the American South northwestward to Western Oregon.Migration routes and wintering grounds are both genetically and traditionally determined depending on the social system of the species. In long-lived, social species such as white storks , flocks are often led by the oldest members and young storks learn the route on their first journey. In short-lived species that migrate alone, such as the Eurasian blackcap Sylvia atricapilla or the yellow-billed cuckoo Coccyzus americanus, first-year migrants follow a genetically determined route that is alterable with selective breeding.
Many migration routes of long-distance migratory birds are circuitous due to evolutionary history: the breeding range of Northern wheatears Oenanthe oenanthe has expanded to cover the entire Northern Hemisphere, but the species still migrates up to 14,500 km to reach ancestral wintering grounds in sub-Saharan Africa rather than establish new wintering grounds closer to breeding areas.
A migration route often does not follow the most direct line between breeding and wintering grounds. Rather, it could follow a hooked or arched line, with detours around geographical barriers or towards suitable stopover habitat. For most land birds, such barriers could consist of large water bodies or high mountain ranges, a lack of stopover or feeding sites, or a lack of thermal columns.
Conversely, in water-birds, large areas of land without wetlands offering suitable feeding sites may present a barrier, and detours avoiding such barriers are observed. For example, brent geese Branta bernicla bernicla migrating between the Taymyr Peninsula and the Wadden Sea travel via low-lying coastal feeding-areas on the White Sea and the Baltic Sea rather than directly across the Arctic Ocean and the Scandinavian mainland.
Great snipes make non-stop flights of 4,000–7,000 km, lasting 60–90 h, during which they change their average cruising heights from 2,000 m at night to around 4,000 m during daytime.