AMSU data is used extensively in weather prediction. Brightness temperatures are processed as quickly as possible and sent to numerical weather prediction centers around the world. This data helps keep the assessment of the current state of the atmosphere correct, which in turn helps make predictions more accurate. Long-term AMSU records are also used in studies of climate.
AMSUs are always situated on polar-orbiting satellites in sun-synchronous orbits. This results in their crossing the equator at the same two local solar times every orbit. For example, EOS Aqua crosses the equator in daylight heading north at 1:30 pm solar time and in darkness heading south at 1:30 am solar time. The AMSU instruments scan continuously in a "whisk broom" mode. During about 6 seconds of each 8-second observation cycle, AMSU-A makes 30 observations at 3.3° steps from −48° to +48°. It then makes observations of a warm calibration target and of cold space before it returns to its original position for the start of the next scan. In these 8 seconds the subsatellite point moves about 45 km, so the next scan will be 45 km further along the track. AMSU-B meanwhile makes 3 scans of 90 observations each, with a spacing of 1.1°. During any given 24-hour period there are approximately 16 orbits. Almost the entire globe is observed in either daylight or nighttime mode, many in both. Polar regions are observed nearly every 100 minutes.
Instrument characteristics
The AMSU has two sub-instruments, AMSU-A and AMSU-B. AMSU-A has 15 channels between 23.8 and 89 GHz, and is used primarily for measuring atmospheric temperatures. It has a ground resolution near nadir of 45 km. AMSU-B, with five channels between 89 and 183.3 GHz, has a spatial resolution near nadir of 15 km and is primarily intended for moisture sounding. Spot size of both sub-instruments becomes larger and more elongated toward the edges of the swath. When the two instruments are used together, there are roughly 9 AMSU-B fields-of-view in a 3x3 array corresponding to each AMSU-A field-of-view. This reflects the higher spatial variability of water vapor compared to temperature. HIRS/3 infrared sounders with the same spatial resolution as AMSU-B are also included on NOAA 15–17 satellites and are used together with AMSU-A and AMSU-B. Together the three instruments form ATOVS, the Advanced TIROS Operational Vertical Sounder. The Aqua and MetOp AMSU-A instruments are 15-channel microwave sounders designed primarily to obtain temperature profiles in the upper atmosphere and to provide a cloud-filtering capability for tropospheric temperature observations. The EOS AMSU-A is part of a closely coupled triplet of instruments that include the AIRS and HSB. The MetOp AMSU-A similarly works with HIRS, IASI, and MHS. MHS and HSB are variants on AMSU-B.
Heritage: Microwave Sounding Unit
Swath: 1650 km
Footprint size: for a nominal spacecraft altitude of 833 km, 48 km at nadir, 16 km at nadir.
Mass: 100 kg
Duty cycle: 100%
Power: 125 W
Data Rate: 3.2 kbit/s
Max scan angle: ±49.5°
Instrument Instantaneous FOV: 3.3° 1.1°
Table 1 Radiometric characteristics of the AMSU-A. Table 2 Radiometric characteristics of the AMSU-B.