Gaia hypothesis
The Gaia hypothesis, also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating complex system that helps to maintain and perpetuate the conditions for life on the planet.
The Gaia hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s. Following the suggestion by his neighbour, novelist William Golding, Lovelock named the hypothesis after Gaia, the primordial deity who was sometimes personified as the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.
Topics related to the Gaia hypothesis include how the biosphere and the evolution of organisms affect the stability of global temperature, salinity of seawater, atmospheric oxygen levels, the maintenance of the hydrosphere, and other environmental variables that affect the habitability of Earth.
The Gaia hypothesis was initially criticized for being teleological - implying the Earth purposefully maintains an atmosphere suitable for life - but this interpretation was rejected by Lovelock. The Gaia hypothesis continues to attract criticism, and today many scientists consider it to be only weakly supported by, or at odds with, the available evidence.
Overview
The Gaia hypothesis argues that organisms co-evolve with their environment. That is, organisms influence the abiotic, not just the biological environment, and in co-development the abiotic environment influences biota via some sort of a Darwinian process, which may indicate an evolution of a collaborative reciprocal evolving life habitat. In 1995, Lovelock gave evidence of this biotic-abiotic relationship in his second iteration of his conjecture within the book Ages of Gaia. This theory states the evolution from the world of the early warm-loving bacteria and methanogenic bacteria towards the oxygen-enriched extant atmosphere, that is, today's atmosphere, which we know is the Holocene and this is a supportive environment of more complex life than primordial times. As each individual species or other systems pursue their self-interest, their combined actions may have counterbalancing effects on the abiotic and biotic environment. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one at the end of the Archaean and the beginning of the Proterozoic periods.Less accepted versions of the Gaia hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia Hypothosis, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms.
Among the precursors of the Gaia hypothesis are Russian scientists such as Piotr Alekseevich Kropotkin, Rafail Vasil’evich Rizpolozhensky, Vladimir Ivanovich Vernadsky, and Vladimir Alexandrovich Kostitzin.
The Gaia paradigm was an influence on the deep ecology movement.
Details
The Gaia hypothesis posits that the Earth is a self-regulating complex system involving the biosphere, the atmosphere, the hydrospheres and the pedosphere, tightly coupled as an evolving system. The hypothesis contends that this system as a whole, called Gaia, seeks a physical and chemical environment optimal for contemporary life.Gaia evolves through a cybernetic feedback system operated by the biota, leading to broad stabilization of the conditions of habitability in a full homeostasis. Many processes in the Earth's surface, essential for the conditions of life, depend on the interaction of living forms, especially microorganisms, with inorganic elements. These processes establish a global control system that regulates Earth's surface temperature, atmosphere composition and ocean salinity, powered by the global thermodynamic disequilibrium state of the Earth system.
The existence of a planetary homeostasis influenced by living forms had been observed previously in the field of biogeochemistry, and it is being investigated also in other fields like Earth system science. The originality of the Gaia hypothesis relies on the assessment that such homeostatic balance is actively pursued with the goal of keeping the optimal conditions for life, even when terrestrial or external events menace them.
Regulation of global surface temperature
Since life started on Earth, the energy provided by the Sun has increased by 25–30%; however, the surface temperature of the planet has remained within the levels of habitability, reaching quite regular low and high margins. Lovelock has also hypothesised that methanogens produced elevated levels of methane in the early atmosphere, giving a situation similar to that found in petrochemical smog, similar in some respects to the atmosphere on Titan. This, he suggests, helped to screen out ultraviolet light until the formation of the ozone layer, maintaining a degree of homeostasis. However, the Snowball Earth research has suggested that "oxygen shocks" and reduced methane levels led, during the Huronian, Sturtian and Marinoan/Varanger Ice Ages, to a world that very nearly became a solid "snowball". These epochs are evidence against the ability of the pre Phanerozoic biosphere to fully self-regulate.Processing of the greenhouse gas CO2, explained below, plays a critical role in the maintenance of the Earth temperature within the limits of habitability.
The CLAW hypothesis, inspired by the Gaia hypothesis, proposes a feedback loop that operates between ocean ecosystems and the Earth's climate. The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere.
Currently the increase in human population and the environmental impact of its activities, such as the multiplication of greenhouse gases may cause negative feedbacks in the environment to become positive feedback. Lovelock has stated that this could bring an extremely accelerated global warming, but he has since stated the effects will likely occur more slowly.
Daisyworld simulations
In response to the criticism that the Gaia hypothesis seemingly required unrealistic group selection and cooperation between organisms, James Lovelock and Andrew Watson developed a mathematical model, Daisyworld, in which ecological competition underpinned planetary temperature regulation.Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies, which are assumed to occupy a significant portion of the surface. The colour of the daisies influences the albedo of the planet such that black daisies absorb more light and warm the planet, while white daisies reflect more light and cool the planet. The black daisies are assumed to grow and reproduce best at a lower temperature, while the white daisies are assumed to thrive best at a higher temperature. As the temperature rises closer to the value the white daisies like, the white daisies outreproduce the black daisies, leading to a larger percentage of white surface, and more sunlight is reflected, reducing the heat input and eventually cooling the planet. Conversely, as the temperature falls, the black daisies outreproduce the white daisies, absorbing more sunlight and warming the planet. The temperature will thus converge to the value at which the reproductive rates of the plants are equal.
Lovelock and Watson showed that, over a limited range of conditions, this negative feedback due to competition can stabilize the planet's temperature at a value which supports life, if the energy output of the Sun changes, while a planet without life would show wide temperature changes. The percentage of white and black daisies will continually change to keep the temperature at the value at which the plants' reproductive rates are equal, allowing both life forms to thrive.
It has been suggested that the results were predictable because Lovelock and Watson selected examples that produced the responses they desired.
Regulation of oceanic salinity
Ocean salinity has been constant at about 3.5% for a very long time. Salinity stability in oceanic environments is important as most cells require a rather constant salinity and do not generally tolerate values above 5%. The constant ocean salinity was a long-standing mystery, because no process counterbalancing the salt influx from rivers was known. Recently it was suggested that salinity may also be strongly influenced by seawater circulation through hot basaltic rocks, and emerging as hot water vents on mid-ocean ridges. However, the composition of seawater is far from equilibrium, and it is difficult to explain this fact without the influence of organic processes. One suggested explanation lies in the formation of salt plains throughout Earth's history. It is hypothesized that these are created by bacterial colonies that fix ions and heavy metals during their life processes.In the biogeochemical processes of Earth, sources and sinks are the movement of elements. The composition of salt ions within our oceans and seas is: sodium, chlorine, sulfate, magnesium, calcium and potassium. The elements that comprise salinity do not readily change and are a conservative property of seawater. There are many mechanisms that change salinity from a particulate form to a dissolved form and back. Considering the metallic composition of iron sources across a multifaceted grid of thermomagnetic design, not only would the movement of elements hypothetically help restructure the movement of ions, electrons, and the like, but would also potentially and inexplicably assist in balancing the magnetic bodies of the Earth's geomagnetic field. The known sources of sodium i.e. salts are when weathering, erosion, and dissolution of rocks are transported into rivers and deposited into the oceans.
The Mediterranean Sea as being Gaia's kidney is found by Kenneth J. Hsu, a correspondence author in 2001. Hsu suggests the "desiccation" of the Mediterranean is evidence of a functioning Gaia "kidney". In this and earlier suggested cases, it is plate movements and physics, not biology, which performs the regulation. Earlier "kidney functions" were performed during the "deposition of the Cretaceous, Jurassic, Permo-Triassic, Devonian, and Cambrian/Precambrian saline giants."