GeForce 8 series


The GeForce 8 series is the eighth generation of Nvidia's GeForce line of graphics processing units. The third major GPU architecture developed by Nvidia, Tesla represents the company's first unified shader architecture.

Overview

All GeForce 8 Series products are based on Tesla.
As with many GPUs, it is important to note that the larger numbers these cards carry does not guarantee superior performance over previous generation cards with a lower number. For example, the GeForce 8300 and 8400 entry-level cards cannot be compared to the previous GeForce 7200 and 7300 cards due to their inferior performance. The same can be said for the high-end GeForce 8800 GTX card, which cannot be compared to the previous GeForce 7800 GTX card due to differences in performance.

Max resolution

Dual dual-link DVI support:
Able to drive two flat-panel displays up to 2560×1600 resolution. Available on select GeForce 8800 and 8600 GPUs.
One dual-link DVI support:
Able to drive one flat-panel display up to 2560×1600 resolution. Available on select GeForce 8500 GPUs and GeForce 8400 GS cards based on the G98.
One single-link DVI support:
Able to drive one flat-panel display up to 1920×1200 resolution. Available on select GeForce 8400 GPUs. GeForce 8400 GS cards based on the G86 only support single-link DVI.

Display capabilities

The GeForce 8 series supports 10-bit per channel display output, up from 8-bit on previous Nvidia cards. This potentially allows higher fidelity color representation and separation on capable displays. The GeForce 8 series, like its recent predecessors, also supports Scalable Link Interface for multiple installed cards to act as one via an SLI Bridge, so long as they are of similar architecture.
NVIDIA's PureVideo HD video rendering technology is an improved version of the original PureVideo introduced with GeForce 6. It now includes GPU-based hardware acceleration for decoding HD movie formats, post-processing of HD video for enhanced images, and optional High-bandwidth Digital Content Protection support at the card level.

GeForce 8300 and 8400 series

In the summer of 2007 Nvidia released the entry-level GeForce 8300 GS and 8400 GS graphics cards, based on the G86 core. The GeForce 8300 was only available in the OEM market, and was also available in integrated motherboard GPU form as the GeForce 8300 mGPU. The GeForce 8300 series was only available in PCI Express, with the GeForce 8400 series using either PCI Express or PCI. The first version of the 8400 GS is sometimes called "GeForce 8400 GS Rev. 1".
Being entry-level cards, it is usually less powerful than with mid-range and high-end cards. Because of the reduced graphics performance of these cards, it is not suitable for intense 3D applications such as fast, high-resolution video games, however they could still play most games in lower resolutions and settings, making these cards popular among casual gamers and HTPC builders without a PCI Express or AGP slot on the motherboard.
The GeForce 8300 and 8400 series were originally designed to replace the low-cost GeForce 7200 series and entry-level GeForce 7300 series, however they were not able to do so due to their aforementioned inferior gaming performance.
At the end of 2007 Nvidia released a new GeForce 8400 GS based on the G98 chip. It is quite different from the G86 used for the "first" 8400 GS, as the G98 features VC-1 and MPEG2 video decoding completely in hardware, lower power consumption, reduced 3D-performance and a smaller fabrication process. The G98 also features dual-link DVI support and PCI Express 2.0. G86 and G98 cards were both sold as "8400 GS", the difference showing only in the technical specifications. This card is sometimes referred to as "GeForce 8400 GS Rev. 2".
During mid-2010 Nvidia released another revision of the GeForce 8400 GS based on the GT218 chip. It has a larger amount of RAM, a significantly reduced 3D-performance, and is capable of DirectX 10.1, OpenGL 3.3 and Shader 4.1. This card is also known as "GeForce 8400 GS Rev. 3".

GeForce 8500 and 8600 series

On April 17, 2007, Nvidia released the GeForce 8500 GT for the entry-level market, and the GeForce 8600 GT and 8600 GTS for the mid-range market. The GeForce 8600 GS was also available. They are based on the G84 core. This series came in PCI Express configurations, with some cards in PCI.
With the 8600 series being mid-range cards, they provided more power than entry-level cards such as the 8400 and 8500 series but are not as powerful as with the high-end cards such as the 8800 series. They provided adequate performance in most games with decent resolutions and settings but may struggle with handling some higher-resolution video games.
Nvidia introduced 2nd-generation PureVideo with this series. As the first major update to PureVideo since the GeForce 6's launch, 2nd-gen PureVideo offered much improved hardware-decoding for H.264.

GeForce 8800 series

The 8800 series, codenamed G80, was launched on November 8, 2006, with the release of the GeForce 8800 GTX and GTS for the high-end market. A 320 MB GTS was released on February 12 and the Ultra was released on May 2, 2007. The cards are larger than their predecessors, with the 8800 GTX measuring 10.6 in in length and the 8800 GTS measuring 9 in. Both cards have two dual-link DVI connectors and an HDTV/S-Video out connector. The 8800 GTX requires 2 PCIe power inputs to keep within the PCIe standard, while the GTS requires just one.

8800 GS

The 8800 GS is a trimmed-down 8800 GT with 96 stream processors and either 384 or 768 MB of RAM on a 192-bit bus. In May 2008, it was rebranded as the 9600 GSO in an attempt to spur sales.
The early 2008 iMac models featured an 8800 GS GPU that is actually a modified version of the 8800M GTS with a slightly higher clock speed, rebranded as an 8800 GS. These newly updated models with the rebranded 8800 GS GPUs were announced by Apple on April 28, 2008. It uses 512 MB of GDDR3 video memory clocked at 800 MHz, 64 unified stream processors, a 500 MHz core speed, a 256-bit memory bus width, and a 1250 MHz shader clock. These specifications are highly similar to that of the 8800M GTS, of which the iMac's 8800 GS GPU is based on.

8800 GTX / 8800 Ultra

The 8800 GTX is equipped with 768 MB GDDR3 RAM. The 8800 series replaced the GeForce 7900 series as Nvidia's top-performing consumer GPU. GeForce 8800 GTX and GTS use identical GPU cores, but the GTS model disables parts of the GPU and reduces RAM size and bus width to lower production cost.
At the time, the G80 was the largest commercial GPU ever constructed. It consists of 681 million transistors covering a 480 mm2 die surface area built on a 90 nm process..
A minor manufacturing defect related to a resistor of improper value caused a recall of the 8800 GTX models just two days before the product launch, though the launch itself was unaffected.
The GeForce 8800 GTX was by far the fastest GPU when first released, and 13 months after its initial debut it still remained one of the fastest. The GTX has 128 stream processors clocked at 1.35 GHz, a core clock of 575 MHz, and 768 MB of 384-bit GDDR3 memory at 1.8 GHz, giving it a memory bandwidth of 86.4 GB/s. The card performs faster than a single Radeon HD 2900 XT, and faster than 2 Radeon X1950 XTXs in Crossfire or 2 GeForce 7900 GTXs in SLI. The 8800 GTX also supports HDCP, but one major flaw is its older NVIDIA PureVideo processor that uses more CPU resources. Originally retailing for around US$600, prices came down to under US$400 before it was discontinued. The 8800 GTX was also very power hungry for its time, demanding up to 155 watts of power and requiring two 6-pin PCI-E power connectors to operate. The 8800 GTX also has 2 SLI connector ports, allowing it to support NVIDIA 3-way SLI for users who run demanding games at extreme resolutions such as 2560x1600.
The 8800 Ultra, retailing at a higher price than the 8800 GTX, is identical to the GTX architecturally, but features higher clocked shaders, core and memory. Nvidia told the media in May 2007 that the 8800 Ultra was a new stepping, creating less heat therefore clocking higher. Originally retailing from $829, most users thought the card to be a poor value, offering only 10% more performance than the GTX but costing hundreds of dollars more. Prices dropped to as low as $200 before being discontinued on January 23, 2008. The core clock of the Ultra runs at 612 MHz, the shaders at 1.5 GHz, and finally the memory at 2.16 GHz, giving the Ultra a theoretical memory bandwidth of 103.7 GB/s. It has 2 SLI connector ports, allowing it to support Nvidia 3-way SLI. An updated dual slot cooler was also implemented, allowing for quieter and cooler operation at higher clock speeds.

8800 GT

The 8800 GT, codenamed G92, was released on October 29, 2007. This card is the first to transition to the 65 nm process, and supports PCI-Express 2.0. It has a single-slot cooler as opposed to the dual-slot cooler on the 8800 GTS and GTX, and uses less power than GTS and GTX due to its aforementioned 65 nm process. While its core processing power is comparable to that of the GTX, the 256-bit memory interface and the 512 MB of GDDR3 memory often hinders its performance at very high resolutions and graphics settings. The 8800 GT, unlike other 8800 cards, is equipped with the PureVideo HD VP2 engine for GPU assisted decoding of the H.264 and VC-1 codecs.
The release of this card presents an odd dynamic to the graphics processing industry. With an initial projected street price at around $300, this card outperforms ATI's flagship HD2900XT in most situations, and even NVIDIA's own 8800 GTS 640 MB. The card, while only marginally slower in synthetic and gaming benchmarks than the 8800 GTX, also takes much of the value away from Nvidia's own high-end card.
Performance benchmarks at stock speeds place it above the 8800 GTS and slightly below the 8800 GTX. A 256 MB version of the 8800 GT with lower stock memory speeds but with the same core is also available. Performance benchmarks have shown that the 256 MB version of the 8800 GT has a considerable performance disadvantage when compared to its 512 MB counterpart, especially in newer games such as Crysis. Some manufacturers also make models with 1 GB of memory; and with large resolutions and big textures, one can perceive a significant performance difference in the benchmarks. These models are more likely to take up to 2 slots of the computer due to its usage of dual-slot coolers instead of a single-slot cooler on other models.
The performance and popularity of this card is demonstrated by the fact that even as late as 2014, the 8800 GT was often listed as the minimum requirement for modern games developed for much more powerful hardware.