# Quantum mechanics

**Quantum mechanics**, part of quantum field theory, is a fundamental theory in physics. It describes physical properties of nature on an atomic scale.

Classical physics, the description of physics that existed before the theory of relativity and quantum mechanics, describes many aspects of nature at an ordinary scale, while quantum mechanics explains the aspects of nature at small scales, for which classical mechanics is insufficient.

Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values, objects have characteristics of both particles and waves, and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions.

Quantum mechanics arose gradually, from theories to explain observations which could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper which explained the photoelectric effect. Early quantum theory was profoundly re-conceived in the mid-1920s by Erwin Schrödinger, Werner Heisenberg, Max Born and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical function, the wave function, provides information about the probability amplitude of energy, momentum, and other physical properties of a particle.

## History

Scientific inquiry into the wave nature of light began in the 17th and 18th centuries, when scientists such as Robert Hooke, Christiaan Huygens and Leonhard Euler proposed a wave theory of light based on experimental observations. In 1803 English polymath Thomas Young described the famous double-slit experiment. This experiment played a major role in the general acceptance of the wave theory of light.In 1838 Michael Faraday discovered cathode rays. These studies were followed by the 1859 statement of the black-body radiation problem by Gustav Kirchhoff, the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system can be discrete, and the 1900 quantum hypothesis of Max Planck. Planck's hypothesis that energy is radiated and absorbed in discrete "quanta" precisely matched the observed patterns of black-body radiation.

In 1896 Wilhelm Wien empirically determined a distribution law of black-body radiation, called Wien's law. Ludwig Boltzmann independently arrived at this result by considerations of Maxwell's equations. However, it was valid only at high frequencies and underestimated the radiance at low frequencies.

The foundations of quantum mechanics were established during the first half of the 20th century by Max Planck, Niels Bohr, Werner Heisenberg, Louis de Broglie, Arthur Compton, Albert Einstein, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Enrico Fermi, Wolfgang Pauli, Max von Laue, Freeman Dyson, David Hilbert, Wilhelm Wien, Satyendra Nath Bose, Arnold Sommerfeld, and others. The Copenhagen interpretation of Niels Bohr became widely accepted.

Max Planck corrected this model using Boltzmann's statistical interpretation of thermodynamics and proposed what is now called Planck's law, which led to the development of quantum mechanics. After Planck's solution in 1900 to the black-body radiation problem, Albert Einstein offered a quantum-based explanation of the photoelectric effect. Around 1900–1910, the atomic theory but not the corpuscular theory of light first came to be widely accepted as scientific fact; these latter theories can be considered quantum theories of matter and electromagnetic radiation, respectively. However, the photon theory was not widely accepted until about 1915. Even until Einstein's Nobel Prize, Niels Bohr did not believe in the photon.

Among the first to study quantum phenomena were Arthur Compton, C. V. Raman, and Pieter Zeeman, each of whom has a quantum effect named after him. Robert Andrews Millikan studied the photoelectric effect experimentally, and Albert Einstein developed a theory for it. At the same time, Ernest Rutherford experimentally discovered the nuclear model of the atom, and Niels Bohr developed a theory of atomic structure, confirmed by the experiments of Henry Moseley. In 1913 Peter Debye extended Bohr's theory by introducing elliptical orbits, a concept also introduced by Arnold Sommerfeld. This phase is known as old quantum theory.

According to Planck, each energy element

*is proportional to its frequency :*

is considered the father of the quantum theory.

where

*h*is Planck's constant.

Planck cautiously insisted that this was only an aspect of the processes of absorption and emission of radiation and was not the

*physical reality*of the radiation. In fact, he considered his quantum hypothesis a mathematical trick to get the right answer rather than a sizable discovery. However, in 1905 Albert Einstein interpreted Planck's quantum hypothesis realistically and used it to explain the photoelectric effect, in which shining light on certain materials can eject electrons from the material. Einstein won the 1921 Nobel Prize in Physics for this work.

Einstein further developed this idea to show that an electromagnetic wave such as light could also be described as a particle, with a discrete amount of energy that depends on its frequency. In his paper “On the Quantum Theory of Radiation,” Einstein expanded on the interaction between energy and matter to explain the absorption and emission of energy by atoms. Although overshadowed at the time by his general theory of relativity, this paper articulated the mechanism underlying the stimulated emission of radiation, which became the basis of the laser.

in Brussels was the fifth world physics conference.

In the mid-1920s quantum mechanics was developed to become the standard formulation for atomic physics. In the summer of 1925, Bohr and Heisenberg published results that closed the old quantum theory. Due to their particle-like behavior in certain processes and measurements, light quanta came to be called photons. In 1926 Erwin Schrödinger suggested a partial differential equation for the wave functions of particles like electrons. And when effectively restricted to a finite region, this equation allowed only certain modes, corresponding to discrete quantum states – whose properties turned out to be exactly the same as implied by matrix mechanics. Einstein's simple postulation spurred a flurry of debate, theorizing, and testing. Thus, the entire field of quantum physics emerged, leading to its wider acceptance at the Fifth Solvay Conference in 1927.

It was found that subatomic particles and electromagnetic waves are neither simply particle nor wave but have certain properties of each. This originated the concept of wave–particle duality.

By 1930 quantum mechanics had been further unified and formalized by David Hilbert, Paul Dirac and John von Neumann with greater emphasis on measurement, the statistical nature of our knowledge of reality, and philosophical speculation about the 'observer'. It has since permeated many disciplines, including quantum chemistry, quantum electronics, quantum optics, and quantum information science. It also provides a useful framework for many features of the modern periodic table of elements, and describes the behaviors of atoms during chemical bonding and the flow of electrons in computer semiconductors, and therefore plays a crucial role in many modern technologies. Its speculative modern developments include string theory and quantum gravity theory.

While quantum mechanics was constructed to describe the world of the very small, it is also needed to explain some macroscopic phenomena such as superconductors and superfluids.

The word

*quantum*derives from the Latin, meaning "how great" or "how much". In quantum mechanics, it refers to a discrete unit assigned to certain physical quantities such as the energy of an atom at rest. The discovery that particles are discrete packets of energy with wave-like properties led to the branch of physics dealing with atomic and subatomic systems which is today called quantum mechanics. It underlies the mathematical framework of many fields of physics and chemistry, including condensed matter physics, solid-state physics, atomic physics, molecular physics, computational physics, computational chemistry, quantum chemistry, particle physics, nuclear chemistry, and nuclear physics. Some fundamental aspects of the theory are still actively studied.

Quantum mechanics is essential for understanding the behavior of systems at atomic length scales and smaller. If the physical nature of an atom were solely described by classical mechanics, electrons would not

*orbit*the nucleus, since orbiting electrons emit radiation and so would quickly lose energy and collide with the nucleus. This framework was unable to explain the stability of atoms. Instead, electrons remain in an uncertain, non-deterministic,

*smeared*, probabilistic wave–particle orbital about the nucleus, defying the traditional assumptions of classical mechanics and electromagnetism.

Quantum mechanics was initially developed to provide a better explanation and description of the atom, especially the differences in the spectra of light emitted by different isotopes of the same chemical element, as well as subatomic particles. In short, the quantum-mechanical atomic model has succeeded spectacularly in the realm where classical mechanics and electromagnetism falter.

Broadly speaking, quantum mechanics incorporates four classes of phenomena for which classical physics cannot account: